3.497 \(\int \frac {a+b \cosh ^{-1}(c x)}{x^4 (d+e x^2)} \, dx\)

Optimal. Leaf size=624 \[ \frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1-\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}-\sqrt {c^2 (-d)-e}}\right )}{2 (-d)^{5/2}}-\frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}-\sqrt {c^2 (-d)-e}}+1\right )}{2 (-d)^{5/2}}+\frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1-\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{\sqrt {c^2 (-d)-e}+c \sqrt {-d}}\right )}{2 (-d)^{5/2}}-\frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{\sqrt {c^2 (-d)-e}+c \sqrt {-d}}+1\right )}{2 (-d)^{5/2}}+\frac {e \left (a+b \cosh ^{-1}(c x)\right )}{d^2 x}-\frac {a+b \cosh ^{-1}(c x)}{3 d x^3}+\frac {b c^3 \tan ^{-1}\left (\sqrt {c x-1} \sqrt {c x+1}\right )}{6 d}-\frac {b e^{3/2} \text {Li}_2\left (-\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}-\sqrt {-d c^2-e}}\right )}{2 (-d)^{5/2}}+\frac {b e^{3/2} \text {Li}_2\left (\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}-\sqrt {-d c^2-e}}\right )}{2 (-d)^{5/2}}-\frac {b e^{3/2} \text {Li}_2\left (-\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{\sqrt {-d} c+\sqrt {-d c^2-e}}\right )}{2 (-d)^{5/2}}+\frac {b e^{3/2} \text {Li}_2\left (\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{\sqrt {-d} c+\sqrt {-d c^2-e}}\right )}{2 (-d)^{5/2}}-\frac {b c e \tan ^{-1}\left (\sqrt {c x-1} \sqrt {c x+1}\right )}{d^2}+\frac {b c \sqrt {c x-1} \sqrt {c x+1}}{6 d x^2} \]

[Out]

1/3*(-a-b*arccosh(c*x))/d/x^3+e*(a+b*arccosh(c*x))/d^2/x+1/6*b*c^3*arctan((c*x-1)^(1/2)*(c*x+1)^(1/2))/d-b*c*e
*arctan((c*x-1)^(1/2)*(c*x+1)^(1/2))/d^2+1/2*e^(3/2)*(a+b*arccosh(c*x))*ln(1-(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))
*e^(1/2)/(c*(-d)^(1/2)-(-c^2*d-e)^(1/2)))/(-d)^(5/2)-1/2*e^(3/2)*(a+b*arccosh(c*x))*ln(1+(c*x+(c*x-1)^(1/2)*(c
*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)-(-c^2*d-e)^(1/2)))/(-d)^(5/2)+1/2*e^(3/2)*(a+b*arccosh(c*x))*ln(1-(c*x+(c*x
-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)+(-c^2*d-e)^(1/2)))/(-d)^(5/2)-1/2*e^(3/2)*(a+b*arccosh(c*x))*ln
(1+(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)+(-c^2*d-e)^(1/2)))/(-d)^(5/2)-1/2*b*e^(3/2)*polylog
(2,-(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)-(-c^2*d-e)^(1/2)))/(-d)^(5/2)+1/2*b*e^(3/2)*polylo
g(2,(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)-(-c^2*d-e)^(1/2)))/(-d)^(5/2)-1/2*b*e^(3/2)*polylo
g(2,-(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)+(-c^2*d-e)^(1/2)))/(-d)^(5/2)+1/2*b*e^(3/2)*polyl
og(2,(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)+(-c^2*d-e)^(1/2)))/(-d)^(5/2)+1/6*b*c*(c*x-1)^(1/
2)*(c*x+1)^(1/2)/d/x^2

________________________________________________________________________________________

Rubi [A]  time = 0.98, antiderivative size = 624, normalized size of antiderivative = 1.00, number of steps used = 28, number of rules used = 12, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {5792, 5662, 103, 12, 92, 205, 5707, 5800, 5562, 2190, 2279, 2391} \[ -\frac {b e^{3/2} \text {PolyLog}\left (2,-\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}-\sqrt {c^2 (-d)-e}}\right )}{2 (-d)^{5/2}}+\frac {b e^{3/2} \text {PolyLog}\left (2,\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}-\sqrt {c^2 (-d)-e}}\right )}{2 (-d)^{5/2}}-\frac {b e^{3/2} \text {PolyLog}\left (2,-\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{\sqrt {c^2 (-d)-e}+c \sqrt {-d}}\right )}{2 (-d)^{5/2}}+\frac {b e^{3/2} \text {PolyLog}\left (2,\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{\sqrt {c^2 (-d)-e}+c \sqrt {-d}}\right )}{2 (-d)^{5/2}}+\frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1-\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}-\sqrt {c^2 (-d)-e}}\right )}{2 (-d)^{5/2}}-\frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}-\sqrt {c^2 (-d)-e}}+1\right )}{2 (-d)^{5/2}}+\frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1-\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{\sqrt {c^2 (-d)-e}+c \sqrt {-d}}\right )}{2 (-d)^{5/2}}-\frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{\sqrt {c^2 (-d)-e}+c \sqrt {-d}}+1\right )}{2 (-d)^{5/2}}+\frac {e \left (a+b \cosh ^{-1}(c x)\right )}{d^2 x}-\frac {a+b \cosh ^{-1}(c x)}{3 d x^3}+\frac {b c^3 \tan ^{-1}\left (\sqrt {c x-1} \sqrt {c x+1}\right )}{6 d}-\frac {b c e \tan ^{-1}\left (\sqrt {c x-1} \sqrt {c x+1}\right )}{d^2}+\frac {b c \sqrt {c x-1} \sqrt {c x+1}}{6 d x^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCosh[c*x])/(x^4*(d + e*x^2)),x]

[Out]

(b*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(6*d*x^2) - (a + b*ArcCosh[c*x])/(3*d*x^3) + (e*(a + b*ArcCosh[c*x]))/(d^2*
x) + (b*c^3*ArcTan[Sqrt[-1 + c*x]*Sqrt[1 + c*x]])/(6*d) - (b*c*e*ArcTan[Sqrt[-1 + c*x]*Sqrt[1 + c*x]])/d^2 + (
e^(3/2)*(a + b*ArcCosh[c*x])*Log[1 - (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e])])/(2*(-d)^(5/2
)) - (e^(3/2)*(a + b*ArcCosh[c*x])*Log[1 + (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e])])/(2*(-d
)^(5/2)) + (e^(3/2)*(a + b*ArcCosh[c*x])*Log[1 - (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])])/
(2*(-d)^(5/2)) - (e^(3/2)*(a + b*ArcCosh[c*x])*Log[1 + (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) -
e])])/(2*(-d)^(5/2)) - (b*e^(3/2)*PolyLog[2, -((Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e]))])/(
2*(-d)^(5/2)) + (b*e^(3/2)*PolyLog[2, (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e])])/(2*(-d)^(5/
2)) - (b*e^(3/2)*PolyLog[2, -((Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e]))])/(2*(-d)^(5/2)) + (
b*e^(3/2)*PolyLog[2, (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])])/(2*(-d)^(5/2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 92

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
 EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 5562

Int[(((e_.) + (f_.)*(x_))^(m_.)*Sinh[(c_.) + (d_.)*(x_)])/(Cosh[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :
> -Simp[(e + f*x)^(m + 1)/(b*f*(m + 1)), x] + (Int[((e + f*x)^m*E^(c + d*x))/(a - Rt[a^2 - b^2, 2] + b*E^(c +
d*x)), x] + Int[((e + f*x)^m*E^(c + d*x))/(a + Rt[a^2 - b^2, 2] + b*E^(c + d*x)), x]) /; FreeQ[{a, b, c, d, e,
 f}, x] && IGtQ[m, 0] && NeQ[a^2 - b^2, 0]

Rule 5662

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcC
osh[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1))/(Sqr
t[-1 + c*x]*Sqrt[1 + c*x]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 5707

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a
 + b*ArcCosh[c*x])^n, (d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p
] && (p > 0 || IGtQ[n, 0])

Rule 5792

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int
[ExpandIntegrand[(a + b*ArcCosh[c*x])^n, (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
c^2*d + e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]

Rule 5800

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/((d_.) + (e_.)*(x_)), x_Symbol] :> Subst[Int[((a + b*x)^n*Sinh[x
])/(c*d + e*Cosh[x]), x], x, ArcCosh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {a+b \cosh ^{-1}(c x)}{x^4 \left (d+e x^2\right )} \, dx &=\int \left (\frac {a+b \cosh ^{-1}(c x)}{d x^4}-\frac {e \left (a+b \cosh ^{-1}(c x)\right )}{d^2 x^2}+\frac {e^2 \left (a+b \cosh ^{-1}(c x)\right )}{d^2 \left (d+e x^2\right )}\right ) \, dx\\ &=\frac {\int \frac {a+b \cosh ^{-1}(c x)}{x^4} \, dx}{d}-\frac {e \int \frac {a+b \cosh ^{-1}(c x)}{x^2} \, dx}{d^2}+\frac {e^2 \int \frac {a+b \cosh ^{-1}(c x)}{d+e x^2} \, dx}{d^2}\\ &=-\frac {a+b \cosh ^{-1}(c x)}{3 d x^3}+\frac {e \left (a+b \cosh ^{-1}(c x)\right )}{d^2 x}+\frac {(b c) \int \frac {1}{x^3 \sqrt {-1+c x} \sqrt {1+c x}} \, dx}{3 d}-\frac {(b c e) \int \frac {1}{x \sqrt {-1+c x} \sqrt {1+c x}} \, dx}{d^2}+\frac {e^2 \int \left (\frac {\sqrt {-d} \left (a+b \cosh ^{-1}(c x)\right )}{2 d \left (\sqrt {-d}-\sqrt {e} x\right )}+\frac {\sqrt {-d} \left (a+b \cosh ^{-1}(c x)\right )}{2 d \left (\sqrt {-d}+\sqrt {e} x\right )}\right ) \, dx}{d^2}\\ &=\frac {b c \sqrt {-1+c x} \sqrt {1+c x}}{6 d x^2}-\frac {a+b \cosh ^{-1}(c x)}{3 d x^3}+\frac {e \left (a+b \cosh ^{-1}(c x)\right )}{d^2 x}+\frac {(b c) \int \frac {c^2}{x \sqrt {-1+c x} \sqrt {1+c x}} \, dx}{6 d}-\frac {\left (b c^2 e\right ) \operatorname {Subst}\left (\int \frac {1}{c+c x^2} \, dx,x,\sqrt {-1+c x} \sqrt {1+c x}\right )}{d^2}-\frac {e^2 \int \frac {a+b \cosh ^{-1}(c x)}{\sqrt {-d}-\sqrt {e} x} \, dx}{2 (-d)^{5/2}}-\frac {e^2 \int \frac {a+b \cosh ^{-1}(c x)}{\sqrt {-d}+\sqrt {e} x} \, dx}{2 (-d)^{5/2}}\\ &=\frac {b c \sqrt {-1+c x} \sqrt {1+c x}}{6 d x^2}-\frac {a+b \cosh ^{-1}(c x)}{3 d x^3}+\frac {e \left (a+b \cosh ^{-1}(c x)\right )}{d^2 x}-\frac {b c e \tan ^{-1}\left (\sqrt {-1+c x} \sqrt {1+c x}\right )}{d^2}+\frac {\left (b c^3\right ) \int \frac {1}{x \sqrt {-1+c x} \sqrt {1+c x}} \, dx}{6 d}-\frac {e^2 \operatorname {Subst}\left (\int \frac {(a+b x) \sinh (x)}{c \sqrt {-d}-\sqrt {e} \cosh (x)} \, dx,x,\cosh ^{-1}(c x)\right )}{2 (-d)^{5/2}}-\frac {e^2 \operatorname {Subst}\left (\int \frac {(a+b x) \sinh (x)}{c \sqrt {-d}+\sqrt {e} \cosh (x)} \, dx,x,\cosh ^{-1}(c x)\right )}{2 (-d)^{5/2}}\\ &=\frac {b c \sqrt {-1+c x} \sqrt {1+c x}}{6 d x^2}-\frac {a+b \cosh ^{-1}(c x)}{3 d x^3}+\frac {e \left (a+b \cosh ^{-1}(c x)\right )}{d^2 x}-\frac {b c e \tan ^{-1}\left (\sqrt {-1+c x} \sqrt {1+c x}\right )}{d^2}+\frac {\left (b c^4\right ) \operatorname {Subst}\left (\int \frac {1}{c+c x^2} \, dx,x,\sqrt {-1+c x} \sqrt {1+c x}\right )}{6 d}-\frac {e^2 \operatorname {Subst}\left (\int \frac {e^x (a+b x)}{c \sqrt {-d}-\sqrt {-c^2 d-e}-\sqrt {e} e^x} \, dx,x,\cosh ^{-1}(c x)\right )}{2 (-d)^{5/2}}-\frac {e^2 \operatorname {Subst}\left (\int \frac {e^x (a+b x)}{c \sqrt {-d}+\sqrt {-c^2 d-e}-\sqrt {e} e^x} \, dx,x,\cosh ^{-1}(c x)\right )}{2 (-d)^{5/2}}-\frac {e^2 \operatorname {Subst}\left (\int \frac {e^x (a+b x)}{c \sqrt {-d}-\sqrt {-c^2 d-e}+\sqrt {e} e^x} \, dx,x,\cosh ^{-1}(c x)\right )}{2 (-d)^{5/2}}-\frac {e^2 \operatorname {Subst}\left (\int \frac {e^x (a+b x)}{c \sqrt {-d}+\sqrt {-c^2 d-e}+\sqrt {e} e^x} \, dx,x,\cosh ^{-1}(c x)\right )}{2 (-d)^{5/2}}\\ &=\frac {b c \sqrt {-1+c x} \sqrt {1+c x}}{6 d x^2}-\frac {a+b \cosh ^{-1}(c x)}{3 d x^3}+\frac {e \left (a+b \cosh ^{-1}(c x)\right )}{d^2 x}+\frac {b c^3 \tan ^{-1}\left (\sqrt {-1+c x} \sqrt {1+c x}\right )}{6 d}-\frac {b c e \tan ^{-1}\left (\sqrt {-1+c x} \sqrt {1+c x}\right )}{d^2}+\frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1-\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 (-d)^{5/2}}-\frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1+\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 (-d)^{5/2}}+\frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1-\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 (-d)^{5/2}}-\frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1+\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 (-d)^{5/2}}-\frac {\left (b e^{3/2}\right ) \operatorname {Subst}\left (\int \log \left (1-\frac {\sqrt {e} e^x}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{2 (-d)^{5/2}}+\frac {\left (b e^{3/2}\right ) \operatorname {Subst}\left (\int \log \left (1+\frac {\sqrt {e} e^x}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{2 (-d)^{5/2}}-\frac {\left (b e^{3/2}\right ) \operatorname {Subst}\left (\int \log \left (1-\frac {\sqrt {e} e^x}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{2 (-d)^{5/2}}+\frac {\left (b e^{3/2}\right ) \operatorname {Subst}\left (\int \log \left (1+\frac {\sqrt {e} e^x}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{2 (-d)^{5/2}}\\ &=\frac {b c \sqrt {-1+c x} \sqrt {1+c x}}{6 d x^2}-\frac {a+b \cosh ^{-1}(c x)}{3 d x^3}+\frac {e \left (a+b \cosh ^{-1}(c x)\right )}{d^2 x}+\frac {b c^3 \tan ^{-1}\left (\sqrt {-1+c x} \sqrt {1+c x}\right )}{6 d}-\frac {b c e \tan ^{-1}\left (\sqrt {-1+c x} \sqrt {1+c x}\right )}{d^2}+\frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1-\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 (-d)^{5/2}}-\frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1+\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 (-d)^{5/2}}+\frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1-\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 (-d)^{5/2}}-\frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1+\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 (-d)^{5/2}}-\frac {\left (b e^{3/2}\right ) \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {e} x}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{2 (-d)^{5/2}}+\frac {\left (b e^{3/2}\right ) \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {e} x}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{2 (-d)^{5/2}}-\frac {\left (b e^{3/2}\right ) \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {e} x}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{2 (-d)^{5/2}}+\frac {\left (b e^{3/2}\right ) \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {e} x}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{2 (-d)^{5/2}}\\ &=\frac {b c \sqrt {-1+c x} \sqrt {1+c x}}{6 d x^2}-\frac {a+b \cosh ^{-1}(c x)}{3 d x^3}+\frac {e \left (a+b \cosh ^{-1}(c x)\right )}{d^2 x}+\frac {b c^3 \tan ^{-1}\left (\sqrt {-1+c x} \sqrt {1+c x}\right )}{6 d}-\frac {b c e \tan ^{-1}\left (\sqrt {-1+c x} \sqrt {1+c x}\right )}{d^2}+\frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1-\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 (-d)^{5/2}}-\frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1+\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 (-d)^{5/2}}+\frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1-\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 (-d)^{5/2}}-\frac {e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1+\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 (-d)^{5/2}}-\frac {b e^{3/2} \text {Li}_2\left (-\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 (-d)^{5/2}}+\frac {b e^{3/2} \text {Li}_2\left (\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 (-d)^{5/2}}-\frac {b e^{3/2} \text {Li}_2\left (-\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 (-d)^{5/2}}+\frac {b e^{3/2} \text {Li}_2\left (\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 (-d)^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.61, size = 641, normalized size = 1.03 \[ \frac {1}{6} \left (-\frac {3 e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}-\sqrt {c^2 (-d)-e}}+1\right )}{(-d)^{5/2}}+\frac {3 e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{\sqrt {c^2 (-d)-e}-c \sqrt {-d}}+1\right )}{(-d)^{5/2}}+\frac {3 e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (1-\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{\sqrt {c^2 (-d)-e}+c \sqrt {-d}}\right )}{(-d)^{5/2}}-\frac {3 e^{3/2} \left (a+b \cosh ^{-1}(c x)\right ) \log \left (\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{\sqrt {c^2 (-d)-e}+c \sqrt {-d}}+1\right )}{(-d)^{5/2}}+\frac {6 e \left (a+b \cosh ^{-1}(c x)\right )}{d^2 x}-\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{d x^3}-\frac {6 b c e \sqrt {c^2 x^2-1} \tan ^{-1}\left (\sqrt {c^2 x^2-1}\right )}{d^2 \sqrt {c x-1} \sqrt {c x+1}}+\frac {3 b e^{3/2} \text {Li}_2\left (\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{c \sqrt {-d}-\sqrt {-d c^2-e}}\right )}{(-d)^{5/2}}-\frac {3 b e^{3/2} \text {Li}_2\left (\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{\sqrt {-d c^2-e}-c \sqrt {-d}}\right )}{(-d)^{5/2}}-\frac {3 b e^{3/2} \text {Li}_2\left (-\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{\sqrt {-d} c+\sqrt {-d c^2-e}}\right )}{(-d)^{5/2}}+\frac {3 b e^{3/2} \text {Li}_2\left (\frac {\sqrt {e} e^{\cosh ^{-1}(c x)}}{\sqrt {-d} c+\sqrt {-d c^2-e}}\right )}{(-d)^{5/2}}+\frac {b c \left (c^2 x^2+c^2 x^2 \sqrt {c^2 x^2-1} \tan ^{-1}\left (\sqrt {c^2 x^2-1}\right )-1\right )}{d x^2 \sqrt {c x-1} \sqrt {c x+1}}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcCosh[c*x])/(x^4*(d + e*x^2)),x]

[Out]

((-2*(a + b*ArcCosh[c*x]))/(d*x^3) + (6*e*(a + b*ArcCosh[c*x]))/(d^2*x) - (6*b*c*e*Sqrt[-1 + c^2*x^2]*ArcTan[S
qrt[-1 + c^2*x^2]])/(d^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (b*c*(-1 + c^2*x^2 + c^2*x^2*Sqrt[-1 + c^2*x^2]*ArcTa
n[Sqrt[-1 + c^2*x^2]]))/(d*x^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) - (3*e^(3/2)*(a + b*ArcCosh[c*x])*Log[1 + (Sqrt[e
]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e])])/(-d)^(5/2) + (3*e^(3/2)*(a + b*ArcCosh[c*x])*Log[1 + (Sq
rt[e]*E^ArcCosh[c*x])/(-(c*Sqrt[-d]) + Sqrt[-(c^2*d) - e])])/(-d)^(5/2) + (3*e^(3/2)*(a + b*ArcCosh[c*x])*Log[
1 - (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])])/(-d)^(5/2) - (3*e^(3/2)*(a + b*ArcCosh[c*x])*
Log[1 + (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])])/(-d)^(5/2) + (3*b*e^(3/2)*PolyLog[2, (Sqr
t[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e])])/(-d)^(5/2) - (3*b*e^(3/2)*PolyLog[2, (Sqrt[e]*E^ArcCo
sh[c*x])/(-(c*Sqrt[-d]) + Sqrt[-(c^2*d) - e])])/(-d)^(5/2) - (3*b*e^(3/2)*PolyLog[2, -((Sqrt[e]*E^ArcCosh[c*x]
)/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e]))])/(-d)^(5/2) + (3*b*e^(3/2)*PolyLog[2, (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-
d] + Sqrt[-(c^2*d) - e])])/(-d)^(5/2))/6

________________________________________________________________________________________

fricas [F]  time = 0.56, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {b \operatorname {arcosh}\left (c x\right ) + a}{e x^{6} + d x^{4}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))/x^4/(e*x^2+d),x, algorithm="fricas")

[Out]

integral((b*arccosh(c*x) + a)/(e*x^6 + d*x^4), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {b \operatorname {arcosh}\left (c x\right ) + a}{{\left (e x^{2} + d\right )} x^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))/x^4/(e*x^2+d),x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)/((e*x^2 + d)*x^4), x)

________________________________________________________________________________________

maple [C]  time = 1.79, size = 410, normalized size = 0.66 \[ -\frac {a}{3 d \,x^{3}}+\frac {a e}{d^{2} x}+\frac {a \,e^{2} \arctan \left (\frac {x e}{\sqrt {d e}}\right )}{d^{2} \sqrt {d e}}+\frac {b c \sqrt {c x -1}\, \sqrt {c x +1}}{6 d \,x^{2}}+\frac {b \,\mathrm {arccosh}\left (c x \right ) e}{d^{2} x}-\frac {b \,\mathrm {arccosh}\left (c x \right )}{3 d \,x^{3}}-\frac {2 c b e \arctan \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{d^{2}}-\frac {b \,e^{2} \left (\munderset {\textit {\_R1} =\RootOf \left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (\textit {\_R1}^{2} e +4 c^{2} d +e \right ) \left (\mathrm {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\dilog \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 c \,d^{3}}+\frac {c^{3} b \arctan \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{3 d}+\frac {b \,e^{2} \left (\munderset {\textit {\_R1} =\RootOf \left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (4 \textit {\_R1}^{2} c^{2} d +\textit {\_R1}^{2} e +e \right ) \left (\mathrm {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\dilog \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 c \,d^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccosh(c*x))/x^4/(e*x^2+d),x)

[Out]

-1/3*a/d/x^3+a/d^2*e/x+a*e^2/d^2/(d*e)^(1/2)*arctan(x*e/(d*e)^(1/2))+1/6*b*c*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d/x^2
+b*arccosh(c*x)/d^2*e/x-1/3*b/d*arccosh(c*x)/x^3-2*c*b/d^2*e*arctan(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))-1/8/c*b/d
^3*e^2*sum((_R1^2*e+4*c^2*d+e)/_R1/(_R1^2*e+2*c^2*d+e)*(arccosh(c*x)*ln((_R1-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/2))/
_R1)+dilog((_R1-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/2))/_R1)),_R1=RootOf(e*_Z^4+(4*c^2*d+2*e)*_Z^2+e))+1/3*c^3*b/d*ar
ctan(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))+1/8/c*b/d^3*e^2*sum((4*_R1^2*c^2*d+_R1^2*e+e)/_R1/(_R1^2*e+2*c^2*d+e)*(a
rccosh(c*x)*ln((_R1-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/2))/_R1)+dilog((_R1-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/2))/_R1)),_R
1=RootOf(e*_Z^4+(4*c^2*d+2*e)*_Z^2+e))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {1}{3} \, a {\left (\frac {3 \, e^{2} \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{\sqrt {d e} d^{2}} + \frac {3 \, e x^{2} - d}{d^{2} x^{3}}\right )} + b \int \frac {\log \left (c x + \sqrt {c x + 1} \sqrt {c x - 1}\right )}{e x^{6} + d x^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))/x^4/(e*x^2+d),x, algorithm="maxima")

[Out]

1/3*a*(3*e^2*arctan(e*x/sqrt(d*e))/(sqrt(d*e)*d^2) + (3*e*x^2 - d)/(d^2*x^3)) + b*integrate(log(c*x + sqrt(c*x
 + 1)*sqrt(c*x - 1))/(e*x^6 + d*x^4), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {a+b\,\mathrm {acosh}\left (c\,x\right )}{x^4\,\left (e\,x^2+d\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*acosh(c*x))/(x^4*(d + e*x^2)),x)

[Out]

int((a + b*acosh(c*x))/(x^4*(d + e*x^2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a + b \operatorname {acosh}{\left (c x \right )}}{x^{4} \left (d + e x^{2}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acosh(c*x))/x**4/(e*x**2+d),x)

[Out]

Integral((a + b*acosh(c*x))/(x**4*(d + e*x**2)), x)

________________________________________________________________________________________